Answer:
The answer is -5 > -12 , I hope this helps you.
55 points please answer correctly you will be marked brainiest!
Answer:
Answers are in picture, and they are color-coded.
Step-by-step explanation:
Hope this helps! Brainliest would be much appreciated! Have a great day! :)
Answer:
Upper quartile- The median of the upper half of a set of data
Lower Quartile- The median of the upper half of a set of data
Quartile- Divides a data set into four equal parts
Range- Difference between the highest and lowest data points
Interquartile- The difference between the upper quartile and the lower quartile
James is purchasing a new pair of AirPods for $199.99. If the tax rate is 9%, how much will he spend?
Given:
Price of new AirPods = $199.99
Tax rate = 9%
To find:
How much will he spend?
Solution:
We have,
Price of new AirPods = $199.99
Tax rate = 9%
Tax value = 9% of $199.99
= \(\dfrac{9}{100}\times 199.99\)
= \(17.9991\)
Now,
Total money spend = Price of AirPods + Tax
= \(199.99+17.9991\)
= \(217.9891\)
\(\approx 217.99\)
Therefore, the total money spend by James is $217.99.
In \triangle VWX,△VWX, \overline{XV}\cong \overline{WX}
XV
≅
WX
and \text{m}\angle W = 27^{\circ}.m∠W=27
∘
. Find \text{m}\angle X.m∠X.
Answer:
m<X = 27 degrees
Step-by-step explanation:
From △VWX, since WX = XV, this mean that the triangle is isosceles
The base angle of an isosceles triangle are equal hence <W = <X
Since <W = 27 degrees, hence m<X = 27 degrees
in a chi-squared test, if the null hypothesis is true, we expect the test statistic to be:
If the null hypothesis is true in a chi-squared test, then we expect the test statistic to be approximately equal to its expected value.
In a chi-squared test, the null hypothesis is the statement that there is no significant association between two variables. If the null hypothesis is true, then we expect the test statistic to be approximately equal to its expected value. The expected value is calculated using the degrees of freedom and the expected frequency of each category in the contingency table.
The chi-squared test statistic is calculated by subtracting the observed frequency from the expected frequency for each category and then squaring the result. These squared differences are then summed across all categories to calculate the chi-squared test statistic.
If the null hypothesis is true, we expect the test statistic to be close to its expected value. This is because when the null hypothesis is true, the observed frequencies should be close to the expected frequencies. Therefore, the squared differences should be small, resulting in a small test statistic.
Learn more about null hypothesis at : https://brainly.com/question/28920252
#SPJ4
Identify the variable, coefficient, and constant term of the expression. 1. 4b + 24 2. 11y + 4.5
PLEASE HELP!! Important test!! Option 1 isn't coming up so if you could try to solve others that would be great!
Answer:
4
Step-by-step explanation:
Func 2 is -2
Func 3 is 1
Func 4 is 8
Func 1 is unknown
Somebody please help!
is the standard deviation of the numbers x, y, and z equal to the standard deviation of 10, 15, and 20 ?
This matches the placement of 10, 15, and 20 and hence the standard deviation will be the same in the two cases.
What is the standard deviation?
The standard deviation in statistics is a measure of the amount of variation or dispersion in a set of values. A low standard deviation indicates that the values are close to the set's mean, whereas a high standard deviation indicates that the values are spread out over a wider range.
Standard deviation determines how far numbers deviate from the mean. The Standard deviation of the two sets will be the same if the numbers from the respective means are placed in the same order.
This is what 10, 15, and 20 will be on a number line
10_ _ _ _15 _ _ _ _20
(15 is the mean and 10 and 20 are 5 steps away from the mean)
i) Z - X = 10
This is what Z and X will be on the number line
X _ _ _ _ _ Z
ii) Z - Y = 5
This is what Z and Y will on the number line.
Y_ _ _ _ _ Z
Together, their relative placement on the number line:
X _ _ _ _ _ Y _ _ _ _ _ Z
This matches the placement of 10, 15, and 20 and hence the standard deviation will be the same in the two cases.
To learn more about the area of the standard deviation visit,
https://brainly.com/question/475676
#SPJ1
(4
8. Which ice cream shop gives its customers the better value? Show all of your work!
marks)
A. $14.89 for 12 scoops
B. $7.99 for 5 scoops
C. $9.59 for 8 scoops
Answer:
C
Step-by-step explanation:
on C 1 ice cream cost $1.2 if you multiply 1.2x12=14.4
THE CORRECT ANSWER IS...
C ($9.59 for 8 scoops)
Step-by-step explanation:
well, if you divided 14.89 by 12 it equals $1.24. so that means it's $1.24 for one single scoop for that one. then for B if you divided $7.99 by 5, you'd get $1.60, so that's $1.60 per scoop for B. lastly $9.59 divided by 8 is $1.20, which is the lowest price per scoop, so that makes it the best and most affordable one. i hope i explained that easily, but basically all in all, the answer is C.
The correct answer is in BOLD.
1.24 (A)
1.60 (B)
1.20 (C)
hope this helped! if you could please mark me brainliest that would be amazing, have a great day!
Find the area of a triangle with a =17, b =13, and c =19.
STEPS
1)
1. Write the coordinates of the 1st and
2nd points.
2. Label the coordinates of the first point
as
(X1,Y1) and the 2nd point as (X2
Y2).
3. Use the formula
m=Y2-Y
X2 - X
1st Point 2nd Point
1st Point:
2nd Point:
m=Y-Y
X2 - X
m=Y-Y
X2 - X
Answer:
The first point is right in the origin, so it's (0,0)
Our second point is (2, 1)
Our first point (0,0) would look like if labeled
0(X1) , 0(Y1)
Our second point would look like if labeled
2(X2) , 1(Y2)
Order them to find the slope;
1 - 0 1
____ = ___, our slope for this is 1/2
2 - 0 2
Offering career academies in high schools has become more popular during the past 30 years because they help students prepare for work and postsecondary education. A principal at a large high school with a Science, Technology, Engineering, and Mathematics (STEM) Academy is interested in determining whether the status of a student is associated with level of participation in advanced placement (AP) courses. Student status is categorized as (1) STEM for students in the STEM program or (2) regular. A simple random sample of 200 students in the high school was taken and each student was asked two questions:
Are you in the STEM Academy?
In how many AP courses are you currently enrolled?
The responses of the 200 students are summarized in the table.
Level of Participation in Advanced Placement (AP) Courses Student Status
STEM Regular Total
No AP courses 17 31 48
One AP course 38 70 108
Two or more AP courses 20 24 44
Total 75 125 200
Part A: Calculate the proportion of STEM students who participate in at least one AP course and the proportion of regular students in the sample who participate in at least one AP course.
Part B: Is participating in two or more AP courses independent of student status?
Part C: Describe a method that could have been used to select a simple random sample of 200 students from the high school.
Part D: Is there any reason to believe there is bias in the method that you selected? Why or why not?
Part E: The responses of the 200 students are summarized in the segment bar graph shown.
Compare the distributions and what the graphs reveal about the association between level of participation in AP courses and student status among the 200 students in the sample. (5 points)
Part F: Do these data support the conjecture that student status is related to level of participation in AP courses? Give appropriate statistical evidence to support your conclusion. (10 points)
The proportion of STEM students who participate in at least one AP course is 0.19.
How to calculate proportionIt can be deduced that the proportion of STEM students who participate in at least one AP course will be:
= 38/200
= 0.19
The proportion of regular students in the sample who participate in at least one AP course will be:
= 70/200
= 0.35
Also, participating in two or more AP courses is independent of student status. This is because the p value is more than the 0.05.
A method that could have been used to select a simple random sample of 200 students from the high school is by writing all the registration numbers of the students in a container an randomly picking.
There is bias in the sampling because the convenience sampling is used. This doesn't give everyone an equal chance.
In conclusion, status is not related to level of participation in AP courses.
Learn more about proportion on:
https://brainly.com/question/19994681
6 is added to the
product of 7 and a number.
The equation model of the given statement in question is 6 + 7× x.
What are equation models and arithmetic?The model of equation is defined as the model of the given situation in the form of an equation using constants and variables.
In math, it deals with numbers of operations given according to the statements. The four major arithmetic operators are, addition, subtraction, multiplication, and division.
Given that;
6 is added to product of a number and 7
Now,
Let, the number multiplied by 7 be x,
=7*x
6 is added to the product;
= 6 + 7 × x
Therefore, the equation of model will be given as 6 + 7 × x;
To know more about models visit:
brainly.com/question/22591166
#SPJ9
Solve Dy + Az = B for z
Answer:
B/ADY=Z
Step-by-step explanation:
Just rearrange and divide the variable on each side
(I don’t have much experience with this but it might be wrong but unless you want it in another way I’m glad to edit this answer!)
What is 6x - 1/2y = 8 in standard form?
Answer: 12x - y = 16
Can you help me with this question?
Answer:
remember that the circumference of a circle is 2πR
so the answer is 157.08
How do you find percentages?
Step-by-step explanation:
if you have 3/4 you divide the part, 3, by the whole, 4
3 ÷ 4 = 0.75
then multiply 0.75 by 100, 75, then add a percentage sign: 75%
Please help me I need help
If the diameter of a circle is doubled, the circumference of the new circle is..
A. 1/4 of the circumference of the original circle
B. 1/2 of the circumference of the original circle
C. The same as the circumference as the original circle
D. 2 times the circumference of the original circle
E. 4 times the circumference of the original circle
Answer:
D
Step-by-step explanation:
Let's call the original diameter x. Then, the circumference would be xπ. If the diameter is 2x, the circumference is 2xπ. 2xπ / xπ = 2 so the answer is D.
Answer:
D. 2 times the circumference of the original circle
Step-by-step explanation:
The circumference of a circle is represented by the formula C = 2(r)pi (where is r is the radius), which can also be written as C = (d)pi, where d is the diameter, (since 2r is equivalent to d). If the diameter is doubled, the original equation can be rewritten as C = 2(d)pi. Therefore, the circumference of the new circle is double the original circle.
You can plug in a sample number to further prove this point. Pretend r = 3 so d = 6. C = 6pi. Now when the diameter is doubled, d = 12 and C = 12pi which is double 6pi.
So the answer is D. 2 times the circumference of the original circle
The density of a marble is 2.7g/cm3. What is the mass of th marble slab
Answer:
if the marble slab is 1 cm³ in volume the mass is 2.7 g but u did not put a volume
The radius of a circle is 2 miles. What is the circle's area? r=2 mi Use 3.14 for .
Answer: A≈12.57mi²
Step-by-step explanation:
I can solve this grouping symbol question, please help!
What is the smallest number of squares into which you can divide a rectangle with dimensions 6×7?
The smallest is 1x2.
The circumference of a circle is 56.52 feet. What is the circle's radius?
C=56.52 ft
Use 3.14 for .
Answer:
If we substitute pi as 3.14 we would be doing -
56.52/3.14 = 18
18/2 = 9.
So the circle's radius would be 9.
BUT if you want it with PI. . .
The answer would be 8.995437385
Ade think of a number.he double it and then subtract five.the results cannot less than 100 . find the range of value of x
Answer:
\(x > \frac{105}{2}\)
Step-by-step explanation:
Let's say that the number is \(x\).
He doubles the number and then subtracts five to get the number to be \(2x - 5\). If the result cannot be less than 100, then we can write the inequality \(2x - 5\) > \(100\). Now, solving for x, we get \(x > \frac{105}{2}\).
What are the coordinates of the point on the directed line segment from (-3, -9) to (4,5)
Answer:
(2, 1 )
Step-by-step explanation:
Using the Section formula
For endpoints (x₁, y₁ ) and (x₂, y₂ ) partitioned in the ratio m : n
Then coordinates of point are
[ \(\frac{mx_{2}+nx_{1} }{m+n}\) , \(\frac{my_{2}+ny_{1} }{m+n}\) ]
Here m = 5, n = 2, (x₁, y₁ ) = (- 3, - 9), (x₂, y₂ ) = (4, 5), thus partitioned point
= [ \(\frac{5(4)+2(-3)}{5+2}\) , \(\frac{5(5)+2(-9)}{5+2}\) ]
= [ \(\frac{20-6}{7}\) , \(\frac{25-18}{7}\) ]
= ( \(\frac{14}{7}\) , \(\frac{7}{7}\) )
= (2, 1 )
in a survey of 294 people from city a, 121 preferred new spring soap to all other brands of deodorant soap. in city b, 149 of 409 people preferred new spring soap. find the 99% confidence interval for the difference in the proportions of people from the two cities who prefer new spring soap. (use city a - city b. give your answers correct to three decimal places.) lower limit upper limit
The 99% confidence interval for the difference in the proportions of people from City A and City B who prefer New Spring soap is given by the lower limit and upper limit.
To calculate the confidence interval for the difference in proportions, we can use the formula for the confidence interval for the difference between two proportions:
p1 - p2 ± Z * sqrt((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2)),
where p1 and p2 are the proportions of people from City A and City B who prefer New Spring soap, n1 and n2 are the sample sizes of City A and City B, and Z is the z-score corresponding to the desired level of confidence (in this case, 99%).
From the given information, we have p1 = 121/294 ≈ 0.412 and p2 = 149/409 ≈ 0.364. The sample sizes are n1 = 294 and n2 = 409.
We can substitute these values into the formula along with the z-score for a 99% confidence level (which corresponds to approximately 2.576) to calculate the confidence interval for the difference in proportions.
After performing the calculations, we find the lower limit and upper limit of the confidence interval, rounded to three decimal places.
to learn more about confidence interval click here:
brainly.com/question/29730953
#SPJ11
Fill in the blank: ___% of 25 is 8. *
Answer: 32
Step-by-step explanation:
Answer:
The answer is 32%. Hope this helped
During gym class yesterday. Jason was able to throw a football about 66 feet down the field. Using the
conversion chart, how many yards did Jason's throw travel in gym class?
Alana listed the lowest temperatures recorded in some states
State
Lowest temperature recorded (°F)
-80 Alaska
0 Florida
12 Hawaii
-34 New Jersey
-34 North Carolina
Alana wrote inequalities to compare the temperatures.
Choose all of the correct
inequalities that Alana wrote.
A 12 > 0
B. 0> -34
C. 12<-34
D. -80 < 12
E-34 <-80
The correct inequalities that alana wrote is
B) 0> -34
D) -80< 12
Let X and Y be continuous random variables with the joint probability density f(x, y) = 2/3 y^2 e^{−xy} , x ≥ 0 and y ∈ [1, 2] . (a) Compute the conditional probability density for X, given Y = 2. (b)Are X and Y independent? Why?
(a) The conditional probability density for X, given Y = 2, is 2 \(e^{-2x}\). (b) X and Y are not independent because their joint probability density function cannot be expressed as the product of their individual probability density functions.
(a) To compute the conditional probability density for X, given Y = 2, we use the conditional probability density function formula:
f(x|Y=2) = f(x, 2) / fY(2),
where f(x, 2) is the joint probability density function and fY(2) is the marginal probability density function of Y evaluated at y = 2.
The joint probability density function f(x, y) is given as 2/3 \(y^{2} e^{-xy}\), and since we are considering Y = 2, we substitute y = 2 into the joint probability density function:
f(x, 2) = 2/3 \((2^2) e^{-2x}\) = 8/3 \(e^{-2x}\)
The marginal probability density function of Y, denoted as fY(y), can be obtained by integrating the joint probability density function over the range of x:
fY(y) = ∫[0,∞] f(x, y) dx.
To find fY(2), we integrate f(x, y) = 2/3 \(y^{2} e^{-xy}\) with respect to x from 0 to infinity:
fY(2) = ∫[0,∞] (2/3) \((2^2) e^{-2x}\) dx = (8/3) ∫[0,∞] \(e^{-2x}\) dx.
Evaluating the integral gives fY(2) = 4/3.
Therefore, the conditional probability density for X, given Y = 2, is:
f(x|Y=2) = f(x, 2) / fY(2) = (8/3 \(e^{-2x}\)) / (4/3) = 2 \(e^{-2x}\).
(b) X and Y are not independent because their joint probability density function f(x, y) = 2/3 \(y^{2} e^{-xy}\) cannot be factored into the product of their individual probability density functions, i.e., f(x, y) ≠ fX(x) fY(y).
Independence between random variables requires the joint probability density function to be separable into the product of their marginal probability density functions, which is not the case here.
Therefore, X and Y are dependent random variables.
Learn more about probability here:
https://brainly.com/question/15052059
#SPJ11