When a car is at rest, it begins to accelerate at a pace of 8 Sec at 5 m/s It then continues moving at same speed for another lap after coming to rest in 4 seconds.
The maximum velocity attained by the car, the velocity would be 8m/s.
Initial velocity, u= 0m/s
Distance travelled in 8 sec would be
s= u ×t+ 1/2at²
= 1/2 ×5 ×(8)²
= 160m
Velocity after t= 4sec
= 2×4= 8m/s
What is average velocity?Average velocity is defined as the change in position or displacement (x) divided by the time intervals (t) during which the change occurs. Based on the direction of the displacement, the average velocity might either be positive or negative. The unit of measure for average velocity in the SI is meters per second (m/s or ms-1).
To solve more question on velocity, visit-https://brainly.com/question/16899184
#SPJ13
A 0.05 kg bullet strikes a 1.3 kg box and displaces it by a height of 4.5 m. After hitting
the box, the bullet becomes embedded and remains inside the box. Find the velocity of the bullet-block system after it's hit.
(a) 6.76 m/s
(b) 5 m/s
(c) 9.39 m/s
(d) 7.67 m/s
Now use the above velocity (of the bullet-block system) to find the bullet's velocity before it hit the box.
(e) 196.76 m/s
(f) 100.07 m/s
(g) 209.39 m/s
(h) 253.53 m/s
Answer:
Explanation:
The answer is **(c) 9.39 m/s** for the velocity of the bullet-block system after it's hit, and **(g) 209.39 m/s** for the bullet's velocity before it hit the box.
The velocity of the bullet-block system after it's hit can be found using the conservation of energy. The potential energy of the box before it was hit is mgh, where m is the mass of the box, g is the acceleration due to gravity, and h is the height that the box was displaced. After the bullet hits the box, the potential energy of the box is zero, but the kinetic energy of the bullet-block system is mv^2/2, where m is the total mass of the bullet-block system and v is the velocity of the bullet-block system. Setting these two expressions equal to each other, we get:
```
mgh = mv^2/2
```
Solving for v, we get:
```
v = sqrt(2mgh)
```
In this case, we have:
* m = 0.05 kg + 1.3 kg = 1.35 kg
* g = 9.8 m/s^2
* h = 4.5 m
So, the velocity of the bullet-block system after it's hit is:
```
v = sqrt(2 * 1.35 kg * 9.8 m/s^2 * 4.5 m) = 9.39 m/s
```
The velocity of the bullet before it hit the box can be found using the conservation of momentum. The momentum of the bullet before it hit the box is mv, where m is the mass of the bullet and v is the velocity of the bullet. After the bullet hits the box, the momentum of the bullet-block system is (m + M)v, where M is the mass of the box and v is the velocity of the bullet-block system. Setting these two expressions equal to each other, we get:
```
mv = (m + M)v
```
Solving for v, we get:
```
v = mv/(m + M)
```
In this case, we have:
* m = 0.05 kg
* M = 1.3 kg
* v = 9.39 m/s
So, the velocity of the bullet before it hit the box is:
```
v = 0.05 kg * 9.39 m/s / (0.05 kg + 1.3 kg) = 209.39 m/s
```
The velocity of the bullet-block system after the collision is approximately a) 6.76 m/s, and the bullet's velocity before it hit the box is approximately e) 196.76 m/s.
To solve this problem, we can apply the principle of conservation of momentum and the principle of conservation of mechanical energy.
First, let's calculate the velocity of the bullet-block system after the collision. We can use the principle of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision.
Let m1 be the mass of the bullet (0.05 kg) and m2 be the mass of the box (1.3 kg). Let v1 be the velocity of the bullet before the collision (which we need to find) and v2 be the velocity of the bullet-block system after the collision.
Using the conservation of momentum:
m1 * v1 = (m1 + m2) * v2
0.05 kg * v1 = (0.05 kg + 1.3 kg) * v2
0.05 kg * v1 = 1.35 kg * v2
Now, let's calculate the velocity of the bullet-block system (v2). Since the system goes up by a height of 4.5 m, we can use the principle of conservation of mechanical energy.
m1 * v1^2 = (m1 + m2) * v2^2 + m2 * g * h
0.05 kg * v1^2 = 1.35 kg * v2^2 + 1.3 kg * 9.8 m/s^2 * 4.5 m
Now, we can substitute the value of v2 from the momentum equation into the energy equation and solve for v1.
By solving these equations, we find that v1 is approximately 196.76 m/s.
Therefore, the bullet's velocity before it hit the box is approximately 196.76 m/s. (e) 196.76 m/s
Know more about principle of conservation of momentum here:
https://brainly.com/question/1113396
#SPJ8
Can someone explain how to do the algebra for this question? I know everything else, I just don’t know how to rearrange the question to solve for v.
Answer:
Refer to the step-by-step Explanation.
Step-by-step Explanation:
Simplify the equation with given substitutions,
Given Equation:
\(mgh+(1/2)mv^2+(1/2)I \omega^2=(1/2)mv_{_{0}}^2+(1/2)I \omega_{_{0}}^2\)
Given Substitutions:
\(\omega=v/R\\\\ \omega_{_{0}}=v_{_{0}}/R\\\\\ I=(2/5)mR^2\)\(\hrulefill\)
Start by substituting in the appropriate values: \(mgh+(1/2)mv^2+(1/2)I \omega^2=(1/2)mv_{_{0}}^2+(1/2)I \omega_{_{0}}^2 \\\\\\\\\Longrightarrow mgh+(1/2)mv^2+(1/2)\bold{[(2/5)mR^2]} \bold{[v/R]}^2=(1/2)mv_{_{0}}^2+(1/2)\bold{[(2/5)mR^2]}\bold{[v_{_{0}}/R]}^2\)
Adjusting the equation so it easier to work with.\(\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{2} \Big[\dfrac{2}{5} mR^2\Big]\Big[\dfrac{v}{R} \Big]^2=\dfrac12mv_{_{0}}^2+\dfrac12\Big[\dfrac25mR^2\Big]\Big[\dfrac{v_{_{0}}}{R}\Big]^2\)
\(\hrulefill\)
Simplifying the left-hand side of the equation:
\(mgh+\dfrac{1}{2} mv^2+\dfrac{1}{2} \Big[\dfrac{2}{5} mR^2\Big]\Big[\dfrac{v}{R} \Big]^2\)
Simplifying the third term.
\(\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{2} \Big[\dfrac{2}{5} mR^2\Big]\Big[\dfrac{v}{R} \Big]^2\\\\\\\\\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{2}\cdot \dfrac{2}{5} \Big[mR^2\Big]\Big[\dfrac{v}{R} \Big]^2\\\\\\\\\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5} \Big[mR^2\Big]\Big[\dfrac{v}{R} \Big]^2\)
\(\\ \boxed{\left\begin{array}{ccc}\text{\Underline{Power of a Fraction Rule:}}\\\\\Big(\dfrac{a}{b}\Big)^2=\dfrac{a^2}{b^2} \end{array}\right }\)
\(\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5} \Big[mR^2\Big]\Big[\dfrac{v^2}{R^2} \Big]\\\\\\\\\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5} \Big[mR^2 \cdot\dfrac{v^2}{R^2} \Big]\)
"R²'s" cancel, we are left with:
\(\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5} \Big[mR^2\Big]\Big[\dfrac{v^2}{R^2} \Big]\\\\\\\\\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5}mv^2\)
We have like terms, combine them.
\(\Longrightarrow mgh+\dfrac{1}{2} mv^2+\dfrac{1}{5} \Big[mR^2\Big]\Big[\dfrac{v^2}{R^2} \Big]\\\\\\\\\Longrightarrow mgh+\dfrac{7}{10} mv^2\)
Each term has an "m" in common, factor it out.
\(\Longrightarrow m(gh+\dfrac{7}{10}v^2)\)
Now we have the following equation:
\(\Longrightarrow m(gh+\dfrac{7}{10}v^2)=\dfrac12mv_{_{0}}^2+\dfrac12\Big[\dfrac25mR^2\Big]\Big[\dfrac{v_{_{0}}}{R}\Big]^2\)
\(\hrulefill\)
Simplifying the right-hand side of the equation:
\(\Longrightarrow \dfrac12mv_{_{0}}^2+\dfrac12\cdot\dfrac25\Big[mR^2\Big]\Big[\dfrac{v_{_{0}}}{R}\Big]^2\\\\\\\\\Longrightarrow \dfrac12mv_{_{0}}^2+\dfrac15\Big[mR^2\Big]\Big[\dfrac{v_{_{0}}}{R}\Big]^2\\\\\\\\\Longrightarrow \dfrac12mv_{_{0}}^2+\dfrac15\Big[mR^2\Big]\Big[\dfrac{v_{_{0}}^2}{R^2}\Big]\\\\\\\\\Longrightarrow \dfrac12mv_{_{0}}^2+\dfrac15\Big[mR^2\cdot\dfrac{v_{_{0}}^2}{R^2}\Big]\\\\\\\\\Longrightarrow \dfrac12mv_{_{0}}^2+\dfrac15mv_{_{0}}^2\Big\\\\\\\\\)
\(\Longrightarrow \dfrac{7}{10}mv_{_{0}}^2\)
Now we have the equation:
\(\Longrightarrow m(gh+\dfrac{7}{10}v^2)=\dfrac{7}{10}mv_{_{0}}^2\)
\(\hrulefill\)
Now solving the equation for the variable "v":
\(m(gh+\dfrac{7}{10}v^2)=\dfrac{7}{10}mv_{_{0}}^2\)
Dividing each side by "m," this will cancel the "m" variable on each side.
\(\Longrightarrow gh+\dfrac{7}{10}v^2=\dfrac{7}{10}v_{_{0}}^2\)
Subtract the term "gh" from either side of the equation.
\(\Longrightarrow \dfrac{7}{10}v^2=\dfrac{7}{10}v_{_{0}}^2-gh\)
Multiply each side of the equation by "10/7."
\(\Longrightarrow v^2=\dfrac{10}{7}\cdot\dfrac{7}{10}v_{_{0}}^2-\dfrac{10}{7}gh\\\\\\\\\Longrightarrow v^2=v_{_{0}}^2-\dfrac{10}{7}gh\)
Now squaring both sides.
\(\Longrightarrow \boxed{\boxed{v=\sqrt{v_{_{0}}^2-\dfrac{10}{7}gh}}}\)
Thus, the simplified equation above matches the simplified equation that was given.
You know you can provide 600 W
of power to move large objects. You need to move a 60-kg
safe up to a storage loft, 18 m
above the floor.
Part A
With what average speed can you pull the safe straight up?
A. The average speed you can use to pull the safe is 1.02 m/s
B. The time needed to pull the safe up is 17.65 s
A. How do i determine the velocity?First, we shall obtain the force. This is shown below:
Mass of safe (m) = 60 KgAcceleration due to gravity (g) = 9.8 m/s² Force (F) =?F = mg
F = 60 × 9.8
F = 588 N
Finally, we shall obtain the average speed. Details below:
Power = 600 WForce = 588 NAverage speed =?Power = force × average speed
600 = 588 × average speed
Divide both sides by 588
Average speed = 600 / 588
Average speed = 1.02 m/s
B. How do i determine the time?The time needed to pull the safe up can be obtained as follow:
Average speed = 1.02 m/sTotal distance = 18 mTime = ?Time = Total distance / average speed
Time = 18 / 1.02
Time = 17.65 s
Learn more about average speed:
https://brainly.com/question/31770954
#SPJ1
Complete question:
You know you can provide 600 W
of power to move large objects. You need to move a 60-kg
safe up to a storage loft, 18 m
above the floor.
Part A
With what average speed can you pull the safe straight up?
Part B
What is the time needed to pull the safe up?
Maslow's hierarchy of needs assumes
Answer:
That people are motivated by a series of five universal needs.
Explanation:
Some dragonflies splash down onto the surface of a lake to clean themselves. After this dunking, the dragonflies gain altitude, and then spin rapidly at about 1100 rpm to spray the water off their bodies. When the dragonflies do this "spin-dry," they tuck themselves into a "ball" with a moment of inertia of 2.0×10−7kg⋅m2 . How much energy must the dragonfly generate to spin itself at this rate?
The dragonfly must generate approximately 4.8 × 10^-4 Joules of energy to spin itself at a rate of 1100 rpm.
Start by converting the rotational speed from rpm (revolutions per minute) to rad/s (radians per second). Since 1 revolution is equal to 2π radians, we can use the conversion factor:
Angular speed (ω) = (1100 rpm) × (2π rad/1 min) × (1 min/60 s)
ω ≈ 115.28 rad/s
The moment of inertia (I) is given as 2.0 × 10^-7 kg⋅m².
Use the formula for rotational kinetic energy:
Rotational Kinetic Energy (KE_rot) = (1/2) I ω²
Substituting the given values:
KE_rot = (1/2) × (2.0 × 10^-7 kg⋅m²) × (115.28 rad/s)²
Calculate the value inside the parentheses:
KE_rot ≈ (1/2) × (2.0 × 10^-7 kg⋅m²) × (13274.28 rad²/s²)
KE_rot ≈ 1.331 × 10^-3 J
Round the result to the proper number of significant figures, which in this case is three, as indicated by the given moment of inertia.
KE_rot ≈ 4.8 × 10^-4 J
Therefore, the dragonfly must generate approximately 4.8 × 10^-4 Joules of energy to spin itself at a rate of 1100 rpm.
For more such questions on energy, click on:
https://brainly.com/question/8101588
#SPJ8
a metal ion (x) with a charge of 3= is attracted to a normal ion (z) with a charge of 4- which of these formulas represents the resulting comppound
If the metal ion has a 3+ charge and the nonmetal ion has a 4- charge, the formula of the compound is X4Z3.
What is the formula of a compound?The formula of an ionic compound is determined by the charges of the ions that make up the compound. Recall that when the compound is formed, the ions exchange valences.
Hence, is the metal ion has a 3+ charge and the nonmetal ion has a 4- charge, the formula of the compound is X4Z3.
Missing parts:
A metal ion (X) with a charge of 3+ is attracted to a nonmetal ion (Z) with a charge of 4-. Which of these formulas represents the resulting compound.
A. 7XZ
B. X3Z4
C. X4Z3
D. 4X3Z
Learn more about ionic compounds:https://brainly.com/question/9167977
#SPJ1
Describe 2 things that happen to a DC motor when physical load (like the weight) Increases
Answer:
As the load increases the motor generally reduces rpm, as the happens the counter emf generated in the armature decreases, causing more current to flow to
Explanation:
A car is moving with a speed of 29.8 m/s. The driver sees an accident ahead and slams on the brakes, giving the car a "deceleration" of 3.1 m/s 2. How far (in meters) does the car travel after the driver put on the brakes before it comes to a stop?
Answer:
143.2 m
Explanation:
Final speed is 0, initial speed is 29.8 m/s, a = -3.1 m/s²
v² = v₀² + 2aΔx
0 = (29.8 m/s)² + 2(-3.1 m/s²)(Δx)
Δx = -(29.8 m/s)² / 2(-3.1 m/s²) = -888 m²/s² / -6.2 m/s² = 143.2 m
why acceleration independent variable
Answer:
Explanation:Force and acceleration are directly proportional. ... Mass and acceleration are inversely proportional. In this situation, acceleration changes in response to a change of mass, so mass is the independent variable and acceleration is the dependent variable.
An average froghopper insect has a mass of 12.8 mg and jumps to a maximum height of 293 mm when its takeoff angle is 62.0∘ above the horizontal.
a) Find the takeoff speed of the froghopper.
b) How much kinetic energy did the froghopper generate for this jump? Express your answer in microjoules
c) how much energy per unit body mass was required for this jump ? Express your answer in joules per kilogram of body mass.
a) The takeoff speed of the froghopper can be found using the following equation:
v^2 = 2gh/(1 - cos^2(theta))
where:
v = takeoff speed
g = acceleration due to gravity (9.81 m/s^2)
h = maximum height (293 mm = 0.293 m)
theta = takeoff angle (62.0 degrees)
Substituting the given values into the equation, we get:
v^2 = 2(9.81)(0.293)/(1 - cos^2(62.0))
v^2 = 0.571
v = sqrt(0.571)
v ≈ 0.756 m/s
Therefore, the takeoff speed of the froghopper is approximately 0.756 m/s.
b) The kinetic energy generated by the froghopper can be found using the following equation:
KE = 0.5mv^2
where:
m = mass (12.8 mg = 0.0128 g)
v = takeoff speed (0.756 m/s)
Substituting the given values into the equation, we get:
KE = 0.5(0.0128)(0.756)^2
KE ≈ 0.00346 J
(1 J = 10^6 microjoules)
Therefore, the kinetic energy generated by the froghopper for this jump is approximately 0.00346 microjoules.
c) The energy per unit body mass required for this jump can be found by dividing the kinetic energy by the mass of the froghopper:
energy per unit body mass = KE/m
Substituting the values we obtained earlier, we get:
energy per unit body mass = 0.00346/0.0128
energy per unit body mass ≈ 0.270 J/kg
Therefore, the energy per unit body mass required for this jump is approximately 0.270 joules per kilogram of body mass.
BERE
Which describes the positions on a horizontal number line?
0
O All points to the left of one are positive.
O All points to the right of one are positive.
O All points to the left of zero are negative.
O All points to the right of zero are negative.
Mark this and return
Save and Exit
Next
Submit
Answer:
All points to the left of zero are negative
Explanation:
Answer:
C
Explanation:
on edge
Select the statement(s) that accurately describe why people have to prepare for natural disasters.
1. People have to prepare for natural disasters in order to reduce the risk of injury, death, and property damage caused by the disaster.
What is natural disasters?Natural disasters are adverse events that occur naturally and are a result of the interaction between the physical environment and human activities. They can include floods, hurricanes, tornadoes, earthquakes, tsunamis, wildfires, landslides, volcanic eruptions, and extreme weather events. Natural disasters can have devastating impacts on communities, including loss of life, damage to property, displacement, and destruction of livelihoods. Governments, organizations, and individuals are increasingly working to reduce the impacts of natural disasters through improved risk management, infrastructure planning, and disaster response and recovery efforts.
2. People have to prepare for natural disasters in order to be able to respond quickly and efficiently in the event of an emergency.
3. People have to prepare for natural disasters in order to plan for the financial impacts of the disaster.
To learn more about natural disasters
https://brainly.com/question/13976318
#SPJ1
To perform a drug lookup to ensure that the new compound has been added to the computer system properly , select in the toolbar at the top of the screen . a ) Data b ) Close c ) New d ) Save
To perform a drug lookup to ensure that the new compound has been added to the computer system properly we have to select the new from the toolbar at the top of the screen
What is a computer system?A computer system is a collection of computers, related hardware, and related software. The central processing unit (CPU), memory, input/output, and storage devices are the four main components of a computer system. To produce the desired result, all of these parts operate in concert as a single unit.
Selecting the new from the toolbar at the top of the screen will allow us to run a drug lookup to make sure the new compound has been properly added to the computer system.
Therefore the correct answer is the option C
Learn more about the computer system here
https://brainly.com/question/2612067
#SPJ1
HELP PLEASE DUE IN 3 MINUTES
Answer:
africa
Explanation:
África África ooo
1 pts
Harry spent his summer playing guitar on the corner trying to earn some extra money. He would keep his guitar
case open for people to drop extra change into. Sometimes people would put money in the case and sometimes
people would be rude. Putting money in the hat is a to Harry's behavior.
Tir
Atte
1M
Negative reinforcement
Positive reinforcement
O Negative punishment
Positive punishment
Question 2
1 pts
O
SIC
acer
Answer:
Positive reinforcement
How do bumper cars at an amusement pack demonstrate Newton’s third law?
Answer:
If two bumper cars collide with a certain force, then they will move away from each other in opposite directions with the same force. This demonstrates Newton's third law, which states that for every action, there is an equal and opposite reaction.
Explanation:
How does something(the big bang) come from nothing by nothing i mean the first universe although we don't know where the first universe is but we do know that nothing can't come from something.
The Big Bang theory is the most widely accepted explanation for the origins of the universe, but it does not necessarily imply that the universe emerged from nothing.
It is possible that new discoveries or insights may shed light on this fundamental question in the future. The universe may have arisen from a pre-existing state or through some other natural process that we do not yet understand.
Instead, the theory describes how the universe underwent a rapid expansion from a very dense and hot state. The conditions and laws of physics that applied during the earliest moments of the universe may not necessarily be the same as those we observe today, and there are many unknowns and uncertainties in our understanding of these early stages.
To know more about the Big bang, here
https://brainly.com/question/29316048
#SPJ1
One way to increase friction is to use (A.wax,B.sand,C.water ,D.oil
Answer:
using sand
Explanation:
We can increase friction by making rough surface.
12. Which of the following statements about
density is true?
a. Density depends on mass and volume.
b. Density is weight per unit volume.
c. Density is measured in milliliters.
d. Density is a chemical property.
A cart that weighs 70 N is pushed 50 meters from rest with 1400 N. What is the finalvelocity of thecart?
The weight of cart can be expressed as,
\(W=mg\)Plug in the known value,
\(\begin{gathered} 70N=m(9.8m/s^2) \\ m=\frac{70\text{ N}}{9.8m/s^2}(\frac{1kgm/s^2}{1\text{ N}}) \\ =7.14\text{ kg} \end{gathered}\)The work done on the cart can be expressed as,
\(W=Fd\)According to work energy theorem,
\(W=\frac{1}{2}mv^2-\frac{1}{2}mu^2\)Since the cart is initially at rest therefore, initial speed of cart is zero. Plug in the known expression,
\(\begin{gathered} Fd=\frac{1}{2}mv^2-\frac{1}{2}m(0)^2 \\ \frac{1}{2}mv^2=Fd \\ v^2=\frac{2Fd}{m} \\ v=\sqrt[]{\frac{2Fd}{m}} \end{gathered}\)Substitute the known values,
\(\begin{gathered} v=\sqrt[]{\frac{2(1400\text{ N)(50 m)}}{7.14\text{ kg}}(\frac{1kgm/s^2}{1\text{ N}})} \\ =\sqrt[]{19607.8m^2s^{-2}} \\ \approx140\text{ m/s} \end{gathered}\)Thus, the final velocity of cart is 140 m/s.
To drill or not to drill? That is the big question as Americans face climbing gas prices. Mobil Oil is considering drilling for oil off the coast of California and concerned citizens have protested their attempts to set up drilling sites off-shore. As a result of the controversy, a group of research scientists have been employed by the State of California to study the possible impacts of oil drilling on near-by ecosystems and investigate the likelihood of future oil spills.
The most appropriate method to study the potential impacts of oil drilling on coastal California would be which of these options?
Responses
A research other areas where unsuccessful oil drilling has occurredresearch other areas where unsuccessful oil drilling has occurred
B check historical data in drilling areas to see the likelihood of an oil spillcheck historical data in drilling areas to see the likelihood of an oil spill
C design a computer simulation of an oil spill in the area to determine the environmental impactdesign a computer simulation of an oil spill in the area to determine the environmental impact
D perform a mark and recapture population study on the wildlife in the area prior to drilling
The most appropriate method to study the potential impacts of oil drilling on coastal California would be design a computer simulation of an oil spill in the area to determine the environmental impact design a computer simulation of an oil spill in the area to determine the environmental impact. The correct option to this question is C.
Drilling There are a number of preliminary surveys that must be completed before drilling may be confirmed in the off-coast area, includingTo learn more about the subsurface structures that may make drilling difficult, seismic surveys are conducted in the area.To produce a thorough study, a facias analysis is performed. It aids in identifying the type of facies present, the time the rocks were deposited, and their lithological properties.Additionally, it selects the most promising locations for oil and gas prospecting.So, following a thorough analysis of this criteria and after meeting all requirements, the scientists report these findings and then start digging.For more information on drilling kindly visit to
https://brainly.com/question/30037958
#SPJ1
Which of the following is most likely the caption for the illustration that was scratched out of the textbook?
A. An electrically-charged object can attract an uncharged object with magnetic properties.
B. An electrically-charged object is stronger than a magnet.
C. A dry cell battery has magnetic properties.
D. An electric circuit can only have one dry cell battery.
IMAGE DOWN BELOW OR UP
The correct statement is " A dry cell battery has magnetic properties.", The correct option is C.
A dry cell battery does generate its own magnetic field due to the flow of electric current through the battery.
The magnetic field is created by the movement of charged particles (electrons) within the battery. This magnetic field is relatively weak and is not typically strong enough to be used for practical applications outside of the battery itself.
So, the magnetic properties of the dry cell battery are important for understanding its behavior within an electrical circuit.
Therefore, The correct answer is option C.
To learn more about magnetic flux click:
brainly.com/question/30201571
#SPJ1
When a moving object collides with an object that isn't moving, what happens to the kinetic energy of each object?
All the objects are motionless, so kinetic energy of each object is zero after the collision.
What is Kinetic Energy?The kinetic energy of an object is defined as the energy which is possesses due to its motion. It is the work required to accelerate a body of a given mass from rest to its stated velocity. This energy is gained during its acceleration, the body maintains the kinetic energy as long as its momentum does not change.
Kinetic Energy can be expressed as
\(K.E.=\) \(1/2 mv^2\)
Where, m is the mass of the object
v is the velocity.
It is expressed in joules (J).
After the collision all the objects are at rest, therefore, the final kinetic energy is also zero which shows maximum loss of kinetic energy. Such collisions are called perfectly inelastic.
Thus, all the objects are motionless, so kinetic energy of each object is zero after the collision.
Learn more about Kinetic Energy, here:
https://brainly.com/question/26472013
#SPJ2
write down the value of
920 kg in g
Answer:
920000
Explanation:
Each kg contains 1,000 grams
A radio technician measures the frequency of an AM radio transmitter. The frequency is . What is the frequency in megahertz? Write your answer as a decimal.
Complete Question
A radio technician measures the frequency of an AM radio transmitter. The frequency is 14603 kHz . What is the frequency in megahertz? Write your answer as a decimal.
Answer:
The value is \(x = 14.6 \ MHz\)
Explanation:
From the question we are told that
The frequency is \(f = 14603 \ kHz = 14603 *1000 = 14603000 \ Hz\)
Generally
\(1 Hz \to 1.0 *10^{-6} \ MHz\)
\(14603000 \ Hz \to x MHz\)
=> \(x = \frac{14603000 * 1.0*10^{-6}}{1 }\)
=> \(x = 14.6 \ MHz\)
Which correctly describes latent heat?
A. The heat of molecules that are under pressure
B. The heat held inside of ice crystals colder than -2°C
C. The heat absorbed or lost by a substance while it's changing state
D. The heat used to change the temperature of a liquid
Option C. The heat absorbed or lost by a substance while it's changing state correctly describes latent heat
Latent heat is the heat absorbed or lost by a substance while it is changing state.
The latent heat is a type of heat that is transferred during phase change, i.e., while a substance undergoes a change of state.
For example, when ice melts into liquid water, or when liquid water evaporates into water vapor, heat is absorbed from the surroundings.
Latent heat is not associated with a temperature change; rather, it's associated with a change of state.
For instance, the temperature of water remains at 100°C while boiling.
When water is boiling, the latent heat of vaporization is absorbed and utilized to break the hydrogen bonds holding water molecules together to change water from the liquid phase to the gaseous phase.
When the water is boiling, adding more heat won't increase the water's temperature, instead, the extra heat will be absorbed to change the phase of water molecules.
Therefore, the correct answer to the given question is option C: The heat absorbed or lost by a substance while it is changing state.
For more questions on latent heat
https://brainly.com/question/10765874
#SPJ8
two forces f1=(8i+3j)N and f2=(4i+6j) are acting on 5kg object then what is the magnitude and the direction of the resultant force
what is its acceleration of x and y component
what is the magnitude of acceleration of the object
Two forces f1=(8i+3j)N and f2=(4i+6j) are acting on 5kg object then the magnitude of the resultant force is 15 N and the direction of the resultant force is approximately 36.87 degrees from the positive x-axis.
The acceleration of the object in the x-component (\(a_x\)) is 2.4 \(m/s^{2}\), and the acceleration in the y-component (\(a_y\)) is 1.8 \(m/s^{2}\).
The magnitude of the acceleration of the object is 3 \(m/s^{2}\).
To find the magnitude and direction of the resultant force, we need to add the two given forces together.
Given:
f1 = (8i + 3j) N
f2 = (4i + 6j) N
To find the resultant force (\(F_res\)), we simply add the corresponding components:
\(F_res\) = f1 + f2
= (8i + 3j) + (4i + 6j)
= (8 + 4)i + (3 + 6)j
= 12i + 9j
The magnitude of the resultant force (\(|F_res|\)) can be found using the Pythagorean theorem:
\(|F_res|\)= \(\sqrt{(12^2) + (9^2)}\)
= \(\sqrt{144 + 81}\)
= \(\sqrt{225}\)
= 15 N
So, the magnitude of the resultant force is 15 N.
To find the direction of the resultant force, we can use trigonometry. The direction can be represented by the angle θ between the positive x-axis and the resultant force vector. We can calculate θ using the inverse tangent function:
θ = arctan(9/12)
= arctan(3/4)
≈ 36.87 degrees
Therefore, the direction of the resultant force is approximately 36.87 degrees from the positive x-axis.
Now let's calculate the acceleration of the object in the x and y components. We know that force (F) is related to acceleration (a) through Newton's second law:
F = ma
For the x-component:
\(F_x\)= 12 N
m = 5 kg
Using \(F_x\)= \(ma_x\), we can solve for \(a_x\):
12 N = 5 kg * \(a_x\)
\(a_x\)= 12 N / 5 kg
\(a_x\) = 2.4 \(m/s^{2}\)
For the y-component:
\(F_y\) = 9 N
m = 5 kg
Using \(F_y\) = \(ma_y\), we can solve for \(a_y\):
9 N = 5 kg * \(a_y\)
\(a_y\) = 9 N / 5 kg
\(a_y\)= 1.8 \(m/s^{2}\)
So, the acceleration of the object in the x-component (\(a_x\)) is 2.4 \(m/s^{2}\), and the acceleration in the y-component (\(a_y\)) is 1.8 \(m/s^{2}\).
To find the magnitude of the acceleration (|a|), we can use the Pythagorean theorem:
|a| = \(\sqrt{(a_x^2) + (a_y^2)}\)
= \(\sqrt{(2.4^2) + (1.8^2}\)
= \(\sqrt{5.76 + 3.24}\)
= \(\sqrt{9}\)
= 3 \(m/s^{2}\)
Therefore, the magnitude of the acceleration of the object is 3 \(m/s^{2}\)
For more such information on: force
https://brainly.com/question/25239010
#SPJ11
27. The number of coils of wire through which a bar magnet is moved is increased. The
amount the needle on the meter is deflected
A. increases
B. decreases
C. shows no change
D. does not move at all
The amount the needle on the meter is deflected A. increases
This phenomenon can be explained by Faraday's law of electromagnetic induction. According to this law, when a magnetic field (created by the bar magnet) passes through a coil of wire, it induces an electric current in the wire. This induced current generates its own magnetic field, which interacts with the magnetic field of the bar magnet.
The deflection of the meter needle is a result of this induced current. When the number of coils of wire is increased, there is a greater number of wire loops for the magnetic field to pass through. This leads to a stronger induction of electric current, resulting in a larger deflection of the meter needle.
By increasing the number of coils, more magnetic flux is linked with the wire, resulting in a higher induced electromotive force (emf) and a greater current. This increased current produces a stronger magnetic field around the wire, leading to a larger deflection on the meter. Therefore, increasing the number of coils of wire enhances the magnetic field interaction, resulting in an increased deflection of the meter needle. Therefore, Option A is correct.
Know more about Faraday's law here:
https://brainly.com/question/1640558
#SPJ8
HELP PLEASE SolVE THANK SO MUCH
A mortar, angled 45 degrees from the horizontal, shoots a round with an initial velocity of 90 meters per second.
1) Draw a diagram of the described scenario and organize your
variables along x and y dimensions.
2) For when the round reaches maximum height, calculate for:
a) Time of travel
b) Horizontal displacement
3) For when the round reaches maximum range, calculate for:
a) Time of travel
b) Horizontal displacement
1. Diagram and Variables:
Maximum Height
|
|
|
|
|
|
|
|
|
------------------------ Ground ------------------------>
Variables:
Initial velocity (v₀) = 90 m/s
Launch angle (θ) = 45°
Maximum height (H)
Time of travel at maximum height (t_max_height)
Horizontal displacement at maximum height (d_max_height)
Time of travel at maximum range (t_max_range)
Horizontal displacement at maximum range (d_max_range)
2. For when the round reaches maximum height:
a) Time of travel (t_max_height):
At the maximum height, the vertical velocity (v_y) becomes zero. To find the time it takes for the round to reach the maximum height, we can use the equation for vertical motion:
v_y = v₀ * sin(θ) - g * t
0 = v₀ * sin(θ) - g * t_max_height
Solving for t_max_height:
t_max_height = v₀ * sin(θ) / g
Substituting the values:
t_max_height = 90 m/s * sin(45°) / 9.8 m/s²
Calculating the value:
t_max_height ≈ 6.12 s
b) Horizontal displacement (d_max_height):
The horizontal displacement at maximum height can be calculated using the equation:
d_max_height = v₀ * cos(θ) * t_max_height
Substituting the values:
d_max_height = 90 m/s * cos(45°) * 6.12 s
Calculating the value:
d_max_height ≈ 385.94 m
Therefore, at the maximum height, the time of travel is approximately 6.12 seconds, and the horizontal displacement is approximately 385.94 meters.
3. For when the round reaches maximum range:
a) Time of travel (t_max_range):
To find the time it takes for the round to reach the maximum range, we can consider the symmetry of projectile motion. The time of flight (t_flight) is twice the time it takes to reach maximum height:
t_flight = 2 * t_max_height
Substituting the value of t_max_height:
t_max_range = 2 * 6.12 s
Calculating the value:
t_max_range ≈ 12.24 s
b) Horizontal displacement (d_max_range):
The horizontal displacement at maximum range can be calculated using the equation:
d_max_range = v₀ * cos(θ) * t_max_range
Substituting the values:
d_max_range = 90 m/s * cos(45°) * 12.24 s
Calculating the value:
d_max_range ≈ 868.63 m
Therefore, at the maximum range, the time of travel is approximately 12.24 seconds, and the horizontal displacement is approximately 868.63 meters.
When a mortar is fired at an angle of 45 degrees, it will reach its maximum height in 6.49 seconds and its maximum range in 12.98 seconds. The horizontal displacement of the mortar when it reaches its maximum height will be 413.02 meters, and its horizontal displacement when it reaches its maximum range will be 826.53 meters.
1. To draw a diagram of the described scenario, you can start by drawing a coordinate system. The x-axis represents the horizontal direction, and the y-axis represents the vertical direction. Place the origin (0, 0) at the point of launch. Since the mortar is angled 45 degrees from the horizontal, you can draw a line representing the initial direction of the round at a 45-degree angle from the x-axis.
Next, label the variables along the x and y dimensions. For the x-dimension, you can label the variable as "horizontal displacement" or simply "x." For the y-dimension, you can label the variable as "vertical displacement" or "height" and indicate that it is measured in meters.
2. When the round reaches maximum height:
a)
The time of ascent can be calculated using the following formula:
time = ( initial velocity * sin(angle)) / acceleration due to gravity
In this case, the initial velocity is 90 meters per second, and the angle is 45 degrees. The acceleration due to gravity is typically considered to be approximately 9.8 meters per second squared.
Plugging in the values:
time = (90 * sin(45)) / 9.8 = 6.49s
b) The horizontal displacement at maximum height is :
horizontal displacement = initial velocity * cos (45) * time of ascent
Plugging in the values:
horizontal displacement=90* cos (45) * 6.49s= 413.02m
3. When the round reaches maximum range:
a) The time of travel can be calculated using the following formula:
time = (2 * initial velocity * sin(angle)) / acceleration due to gravity
The initial velocity and angle remain the same.
Plugging in the values:
time = (2 * 90 * sin(45)) / 9.8= 12.98s
b) The horizontal displacement at maximum range can be calculated using the following formula:
horizontal displacement = (initial velocity^2 * sin(2*angle)) / acceleration due to gravity
Plugging in the values:
horizontal displacement = (90^2 * sin(2*45)) / 9.8= 826.53m
Therefore, A mortar will reach its maximum height and distance when shot at a 45-degree angle in 6.49 and 12.98 seconds, respectively. When the mortar achieves its maximum height, its horizontal displacement will be 413.02 meters, and when it reaches its maximum range, it will be 826.53 meters.
To learn more about projectile motion click:
brainly.com/question/29545516
#SPJ1
Using the information from the movie champions what is one conclusion about the history of the sports
One of the conclusion about the history of sports that can be drawn from the movie "Champions" is that sports have a long and rich history that is intertwined with the history of human civilization.
What is Champions about?From the ancient Olympic Games to the modern-day Olympics, sports have been a way for people to come together and compete in a spirit of sportsmanship and competition. Sports have also been a way for people to express themselves, to build community, and to achieve personal goals.
The movie "Champions" tells the story of a group of young men who come together to form a football team. The team is made up of boys from different backgrounds and with different abilities. However, they are all united by their love of football and their desire to win.
Find out more on history of the sports here: https://brainly.com/question/20843217
#SPJ1